(7x^2-7x+21)+(8x^2+9x-42)=0

Simple and best practice solution for (7x^2-7x+21)+(8x^2+9x-42)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x^2-7x+21)+(8x^2+9x-42)=0 equation:



(7x^2-7x+21)+(8x^2+9x-42)=0
We get rid of parentheses
7x^2+8x^2-7x+9x+21-42=0
We add all the numbers together, and all the variables
15x^2+2x-21=0
a = 15; b = 2; c = -21;
Δ = b2-4ac
Δ = 22-4·15·(-21)
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{79}}{2*15}=\frac{-2-4\sqrt{79}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{79}}{2*15}=\frac{-2+4\sqrt{79}}{30} $

See similar equations:

| 9(x-3)/3=3(x+8)/12 | | 14(x-2)=48 | | 116+32+4k=180 | | 65+x+x+x=180 | | F(x)=x^2+8x-48 | | 2(-3x+3)-3(x+5)=x+11 | | 6+35x=15x=38 | | -1+3x=-2+9x | | 3x^2-π·x-√2=0 | | 110+x+x+x=180 | | (y+7)*5-7(y-4)=3*(9-y)+5 | | (x-2)^2=15 | | 3x+50=125 | | 2(x+1)=13 | | (x+7)/4=x+7 | | (y+7)•5-7-(y-4)=3•(9-y)+5 | | 13+x+x+x=180 | | 5n+4+59+57=180 | | 6x+3=-1/3(18x-27) | | 4(x+3)-(x-5)=-2(x-5) | | 120+x+x+x=180 | | 43m+13=56m+24 | | 3(3x-5)+3(2x-6)=42 | | 2x+28=30-2x | | -8-3b=5b+8 | | -8x=-4x-3x | | 4x+2+6x=3x-8+5x+4 | | -b^2-6b+40=0 | | -8500=-500q | | 7x-5=x+4+6x | | 6-x=9-2x | | 2x+5-12=-6x+9 |

Equations solver categories